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m: 8Chloroethyldimethylsilyl enol ether derivatives of five ketones were allowed to 

react with tributylstannane in the presence of AIBN to yield the products of “reductive a-alkylation,” 
1-oxa-2-silacyclohexanes, plus ethyldimethylsilyl enol ether byproducts from direct reduction. The 
unstable oxasilacyclohexanes were treated with methyllithium to yield, upon workup, “I- 
(trimethylsilyl) alcohols. 

Pursuant to our goal of developing “silicon-functionalized” silyl enol ethers in which a silicon 

atom helps to direct a reaction between the enoxy substituent and another reactive substituent,’ we 

report the free-radical cyclization of chloroethylsilyl enol ethers 1 in the presence of a hydrogen 

atom donor to produce 1 -oxa-2-silacyclohexanes (2), as indicated in equation 1. Such a 

transformation represents a net a-alkylation and reduction of the carbonyl-containing precursors of 

1. This reaction is conceptually similar to free-radical cyclizations of (bromomethyl)dimethylsilyl 

ethers derived from allylic alcohols, as reported by numerous workers2 However, the 1 + 2 

transformation is synthetically unique, both in the nature of the products obtained as well as the 

precursors (carbonyl compounds) utilized. 
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The general features of our initial observations are shown in the Scheme, and specific results 

are given in the Table. Chloroethyldimethylsilyl enol ether derivatives of the ketones 3-7 were 

synthesized in high yields from chloro(2-chloroethyl)dimethylsilanes using the procedure of Corey 

and Gross.4 When each of these enol ethers was allowed to react with tributylstannane in the 

presence of AIBN,s the starting material was consumed and a mixture of the oxasilacyclohexane (8) 

and the uncyclized enol ether (9) was obtained, according to IH-NMR analysis of the crude product 

mixture.6 Because of the volatility and instability of the oxasilacyclohexanes 8,’ and the added 

difficulty of separating them from the organotin byproductss the crude product mixtures were treated 

with excess methyllithium to yield, upon aqueous workup, the stable ~(trimethylsilyl) alcohols lo- 

14, which could be scrupulously purlfied and characterized.9 

These results indicate that, by generating a free-radical center at a carbon 8 to the silicon atom 

of a silyl enol ether, one can achieve an “alkylation” of the carbon a to the carbonyl carbon of the 
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Scheme 

0 1) CICH&H2BiMe&I, 
LDA, THF, HMPA a) MeLi, THF OH 

3-7 
F$ 2) Bu&nH, AIBN, PhH b) H20 

Entry Starting Ketone 8:9 Ratios Product Yield (%)a 

1 9O:lO 
H 

+ 

iMeo 28 

10 

2 5050 AiMBg 32 

11 

4 

H 

80:40 OK- iMe 33 

12 

55:45 

H 

& iMea 
20 

8 13 

(80:20 cktrans) 

5 -b- (j+Mes 30 

7 14 

(86:14 (E):(Z)) 

aAfter purification by silica gel chromatography. bNot determined. 

ketone precursor. In no cases were products from a 5-Bxp-rciQ cyclization detected. The synthetic 

potential of this transformation of carbonyl compounds is suggested by entries 4 and 5 of the Table. 

The conversion of ketone 6 into 13 represents the net conversion of cyclohexanone to a & 2- 

alkylcyclohexanol with a good degree of diastereoselectivity. This stereoselectivity is attributed to a 

steric effect, where the tin hydride approaches the carbinol radical intermediate formed by the initial 

cyclization (see equation 1) from a direction W to the newly-formed C-C bond.10 The formation 

of the cyclopentanol 14 from 6-hepten-2-one (7) supports the intermediacy of the carbinol radical 

intermediate, and illustrates the potential for interposing an additional free-radical cyclization step 

between the “alkylation” and the “reduction” steps when a 4-penten-l-yl chain is attached to the 

carbonyl carbon of the ketone starting material. The diastereoselectivity of this transformation is 

notable and precedented. 
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The cyclizations of 6-chloro-4-sila-1 -hexenes, non-oxygenated analogues of 1, were observed 

to proceed exclusively via the 6-g&&-u mode, but only to the extent of 2-5% of the product 

formed; the major products were the 4-sila-1-hexenes resulting from direct reduction.12 Our 

reaction conditions closely resemble those used by these workers, so our results suggest that the 

replacement of a methylene group by an oxygen atom at the 3-position of 4-sila-1 -hexenes 

increases the propensity of the system to undergo cyclization prior to hydrogen donation. However, 

our reaction still suffers from the production of significant amounts of byproduct from direct 

reduction. Furthermore, the yields from our reaction are consistently low (as measured by the 

overall yield of the y-(trimethylsilyl) alcohols from the ketones), a fact that we attribute to a competing 

eliminative side reaction of the j3chloroethylsilyl enol ethers to chlorosilanes and ethene, a 

precedented thermal decomposition reaction of 8chloroethylsilanes,ls under the reaction 

conditions. Attempts to improve these yields have so far failed. However, the results of this study 

indicate that a synthetic strategy which uses a silicon atom as a “template” which brings together a 

carbon-centered free-radical and an enoxy group for a C-C bond-forming reaction is workable. 

When the crude reaction mixture from the cyclization of the chloroethylsilyl enol ether derivative 

of 3 was treated with the Tamao oxidation conditions ,I4 a 20% yield of 5,5-dimethyl-l ,cl-hexanediol 

was obtained. This result indicates the promise of this methodology for performing “reductive a- 

hydroxyethylations” of ketones. This and other synthetic applications of silicon-functionalized silyl 

enol ethers are under investigation.15 
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